Proposición 1. Sean \(F\subseteq E\) con \(E\) y \(F\) espacios vectoriales. Si para todo \(f\in E'\) tal que \(f\) se anula en \(F\) se tiene que \(f\) se anula en \(E\), entonces \(F\) es denso en \(E\), es decir, \[\overline{F} […]
Sigue leyendoCategoría: Análisis Matemático
Propiedades algebraicas de la diferenciación
Ejercicio 1 (Linealidad de la derivada). Sean \(E,F\) espacios normados, \(U\subseteq E\) abierto y \(f,g\colon U \rightarrow F\) funciones dierenciables en \(u_0\in U\). Entonces, \(\alpha f+g\) es diferenciable en \(u_0\) para todo \(\alpha\in\mathbb{K}\) y \[D(\alpha f +g)(u_0) = \alpha Df(u_0) […]
Sigue leyendoLema de Farkas
Teorema 1 (Lema de Farkas). Sean \(A\in\mathbb{R}^{m\times n}\) y \(b\in\mathbb{R}^m\). Entonces, exactamente uno de los siguientes conjuntos debe ser vacío: \(A:=\left\{x\in\mathbb{R}^n\,:\, Ax=b,\, x\geq 0\right\}\); \(B:= \left\{y\in\mathbb{R}^m\,:\,A^Ty\geq 0,\, b^Ty<0\right\}\). Demostración. Sean \(A\in\mathbb{R}^{m\times n}\) y \(b\in\mathbb{R}^m\), cualesquiera. Primera etapa En una primera […]
Sigue leyendoEspacio Cociente
A continuación se encuentra un breve repaso sobre los Espacios Cocientes y algunas propiedades de los mismos, así como algunos ejercicios al final del texto. Espacios Cocientes Introducción Sean \((V,+,\cdot,\mathbb{K})\) un espacio vectorial y \(W\) un subespacio vectorial de \(V\). […]
Sigue leyendoEjercicios para Introducción al Análisis en Espacios de Banach y Hilbert
A continuación encontrarás una selección de algunos ejercicios útiles para profundizar en la materia de Introducción al Análisis en Espacios de Banach y Hilbert. Estos ejercicios han sido recopilados a partir de la bibliografía recomendada para el curso. Las notaciones […]
Sigue leyendoTeorema de Hanh-Banach — Forma Analítica-Algebráica
Teorema 1. Sea \(E\) un espacio vectorial sobre \(\mathbb{K}\), \(F\) un subespacio vectorial de \(E\) y \(g\colon F \rightarrow \mathbb{K}\) un funcional lineal tal que \[\begin{cases} g(x) \leq p(x) & \quad \forall x\in F \quad \text{ si }\quad \mathbb{K}=\mathbb{R}\\ \text{Re}(g(x)) […]
Sigue leyendoTodo espacio prehilbertiano separable posee una familia ortonormal maximal contable
Ejercicio 1. Todo espacio prehilbertiano separable posee una familia ortonormal maximal contable. Sea \(H\) un espacio prehilbertiano. P.D. \(\exists \left\{e_n\right\}_{n\in\mathbb{N}}\) familia ortonormal en \(H\) tal que \[\overline{\mathop{\mathrm{span}}\left\{e_n\right\}_{n\in\mathbb{\mathbb{N}}}} = H.\] Como \(H\) es separable, entonces existe un conjunto numerable denso en […]
Sigue leyendo¿Intercambiar la integral y el límite?
Teorema 1. Sean \(\newcommand{\eval}[2]{\Big | _{#1}^{#2}} \newcommand{\Eval}[2]{\Bigg | _{#1}^{#2}}a<b\) y \((f_n)_{n\in\mathbb{N}}\) una sucesión acotada de funciones reales. Entonces \[\lim_{n\to +\infty} \int_a^b f_n(x)\, dx = \int_a^b \lim_{n\to +\infty} f_n(x)\, dx.\] Ejercicio 1. Verifique que \[\lim_{n\to +\infty}\int_0^1 n^2 x^n(1-x)\, dx \neq \int_0^1 […]
Sigue leyendoDemostración de que un operador cerrado sobre un compacto es acotado
Ejercicio 1. Sean \(E\) y \(F\) espacios normados y \(T\colon E \rightarrow F\) un operador lineal cerrado. Si \(F\) es compacto, demuestre que \(T\) es acotado. Demostración. Primero, notemos que demostrar que \(T\) es acotado es equivalente a demostrar que […]
Sigue leyendoCompletación de una base de Hamel
Ejercicio 1. Sea \(E\) un espacio vectorial sobre \(\mathbb{K}\), \(W\) un subespacio vectorial no nulo de \(E\) y \(B_W\) una base de Hamel para \(W\). Muestre que \(B_W\) puede ser completado a una base de Hamel para \(E\). Demostración. Tomemos […]
Sigue leyendo