Categoría: Material Nuevo

Cálculo de una integral real utilizando una compleja II

Ejercicio. El objetivo de este ejercicio es demostrar que \[ \int_0^{+\infty}\displaystyle\frac{1}{x^4+1}\, dx=\displaystyle\frac{\pi}{2\sqrt 2}. \] Se considera la siguiente gráfica con \(R > 1\), \(z_1=\frac{1+i}{2}\) y \(z_2=\frac{-1+i}{2}\); y tomando \(C = C_1\cup C_2\). Siga los siguientes pasos: Factorice el polinomio \(z^4+1\). […]

Sigue leyendo

Cálculo de una integral compleja

Ejercicio 1. Sea \(\alpha\in\mathbb{C}\) tal que \(\mathop{\mathrm{Re}}(\alpha)>1\). Para demostrar que \[\int_0^{+\infty}\dfrac{e^{-t}-e^{-\alpha t}}{t}\, dt =\mathop{\mathrm{Log}}(\alpha).\] vamos a calcular \[\int_C \dfrac{e^{-z}}{z}\, dz,\] donde \(C\) es la curva dada por la unión de \(C_1\), \(C_2\), \(C_3\) y \(C_4\) dadas por la siguiente gráfica […]

Sigue leyendo

¿Cuántos términos tiene el desarrollo de la potencia n de k términos?

¿Cuántos términos tiene el desarrollo de la potencia \(n\) de \(k\) términos? Es decir, al desarrollar \[(a_1+a_2+\cdots+a_k)^n,\] ¿cuántos términos aparecen? Para responder esta pregunta es preciso expresar de forma exacta la pregunta. Ejercicio 1. Dados \(n,k\in\mathbb{Z}^+\) y \(a_0,a_1,\ldots,a_m\) variables distintas, […]

Sigue leyendo